All researchs

All researchs

All researchs

All researchs

A 16-nm SoC for Noise-Robust Speech and NLP Edge AI Inference With Bayesian Sound Source Separation and Attention-Based DNNs

A 16-nm SoC for Noise-Robust Speech and NLP Edge AI Inference With Bayesian Sound Source Separation and Attention-Based DNNs

Published:22 June, 2022

Published:22 June, 2022

The proliferation of personal artificial intelligence (AI) -assistant technologies with speech-based conversational AI interfaces is driving the exponential growth in the consumer Internet of Things (IoT) market. As these technologies are being applied to keyword spotting (KWS), automatic speech recognition (ASR), natural language processing (NLP), and text-to-speech (TTS) applications, it is of paramount importance that they provide uncompromising performance for context learning in long sequences, which is a key benefit of the attention mechanism, and that they work seamlessly in polyphonic environments. In this work, we present a 25-mm2 system-on-chip (SoC) in 16-nm FinFET technology, codenamed SM6, which executes end-to-end speech-enhancing attention-based ASR and NLP workloads. The SoC includes: 1) FlexASR, a highly reconfigurable NLP inference processor optimized for whole-model acceleration of bidirectional attention-based sequence-to-sequence (seq2seq) deep neural networks (DNNs); 2) a Markov random field source separation engine (MSSE), a probabilistic graphical model accelerator for unsupervised


url: “https://ieeexplore.ieee.org/document/9773265,

The proliferation of personal artificial intelligence (AI) -assistant technologies with speech-based conversational AI interfaces is driving the exponential growth in the consumer Internet of Things (IoT) market. As these technologies are being applied to keyword spotting (KWS), automatic speech recognition (ASR), natural language processing (NLP), and text-to-speech (TTS) applications, it is of paramount importance that they provide uncompromising performance for context learning in long sequences, which is a key benefit of the attention mechanism, and that they work seamlessly in polyphonic environments. In this work, we present a 25-mm2 system-on-chip (SoC) in 16-nm FinFET technology, codenamed SM6, which executes end-to-end speech-enhancing attention-based ASR and NLP workloads. The SoC includes: 1) FlexASR, a highly reconfigurable NLP inference processor optimized for whole-model acceleration of bidirectional attention-based sequence-to-sequence (seq2seq) deep neural networks (DNNs); 2) a Markov random field source separation engine (MSSE), a probabilistic graphical model accelerator for unsupervised


url: “https://ieeexplore.ieee.org/document/9773265,

Harvard Innovation Labs


125 Western Ave


Boston, MA 02163

© Copyright 2025 Stochastic.  All rights reserved.

Harvard Innovation Labs


125 Western Ave


Boston, MA 02163

© Copyright 2025 Stochastic.  All rights reserved.

Harvard Innovation Labs


125 Western Ave


Boston, MA 02163

© Copyright 2025 Stochastic.  All rights reserved.

Harvard Innovation Labs


125 Western Ave


Boston, MA 02163

© Copyright 2024 Stochastic.  

All rights reserved.